

Python language bindings for ev3dev

[image: https://travis-ci.org/rhempel/ev3dev-lang-python.svg?branch=master]
 [https://travis-ci.org/rhempel/ev3dev-lang-python][image: Documentation Status]
 [http://python-ev3dev.readthedocs.org/en/stable/?badge=stable]A Python3 library implementing an interface for ev3dev [http://ev3dev.org] devices,
letting you control motors, sensors, hardware buttons, LCD
displays and more from Python code.

If you haven’t written code in Python before, you’ll need to learn the language
before you can use this library.

Getting Started

This library runs on ev3dev [http://ev3dev.org]. Before continuing, make sure that you have set up
your EV3 or other ev3dev device as explained in the ev3dev Getting Started guide [http://www.ev3dev.org/docs/getting-started/].
Make sure that you have a kernel version that includes -10-ev3dev or higher (a
larger number). You can check the kernel version by selecting “About” in Brickman
and scrolling down to the “kernel version”. If you don’t have a compatible version,
upgrade the kernel before continuing [http://www.ev3dev.org/docs/tutorials/upgrading-ev3dev/]. Also note that if the ev3dev image you downloaded
was created before September 2016, you probably don’t have the most recent version of this
library installed: see Upgrading this Library to upgrade it.

Once you have booted ev3dev and connected to your EV3 (or Raspberry Pi / BeagleBone)
via SSH [http://www.ev3dev.org/docs/tutorials/connecting-to-ev3dev-with-ssh/], you should be ready to start using ev3dev with Python: this library
is included out-of-the-box. If you want to go through some basic usage examples,
check out the Usage Examples section to try out motors, sensors and LEDs.
Then look at Writing Python Programs for Ev3dev to see how you can save
your Python code to a file.

Make sure that you look at the User Resources section as well for links
to documentation and larger examples.

Usage Examples

To run these minimal examples, run the Python3 interpreter from
the terminal using the python3 command:

$ python3
Python 3.4.2 (default, Oct 8 2014, 14:47:30)
[GCC 4.9.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> characters are the default prompt for Python. In the examples
below, we have removed these characters so it’s easier to cut and
paste the code into your session.

Required: Import the library

If you are using an EV3 brick (which is the case for most users), add the
following to the top of your file:

import ev3dev.ev3 as ev3

If you are using a BrickPi, use this line:

import ev3dev.brickpi as ev3

Controlling the LEDs with a touch sensor

This code will turn the left LED red whenever the touch sensor is pressed, and
back to green when it’s released. Plug a touch sensor into any sensor port and
then paste in this code - you’ll need to hit Enter after pasting to complete
the loop and start the program. Hit Ctrl-C to exit the loop.

ts = ev3.TouchSensor()
while True:
 ev3.Leds.set_color(ev3.Leds.LEFT, (ev3.Leds.GREEN, ev3.Leds.RED)[ts.value()])

Running a motor

Now plug a motor into the A port and paste this code into the Python prompt.
This little program will run the motor at 500 ticks per second, which on the EV3
“large” motors equates to around 1.4 rotations per second, for three seconds
(3000 milliseconds).

m = ev3.LargeMotor('outA')
m.run_timed(time_sp=3000, speed_sp=500)

The units for speed_sp that you see above are in “tacho ticks” per second.
On the large EV3 motor, these equate to one tick per degree, so this is 500
degress per second.

Using text-to-speech

If you want to make your robot speak, you can use the Sound.speak method:

ev3.Sound.speak('Welcome to the E V 3 dev project!').wait()

To quit the Python REPL, just type exit() or press Ctrl-D .

Make sure to check out the User Resources section for more detailed
information on these features and many others.

Writing Python Programs for Ev3dev

Every Python program should have a few basic parts. Use this template
to get started:

#!/usr/bin/env python3
from ev3dev.ev3 import *

TODO: Add code here

The first two lines should be included in every Python program you write
for ev3dev. The first allows you to run this program from Brickman, while the
second imports this library.

When saving Python files, it is best to use the .py extension, e.g. my-file.py.
To be able to run your Python code, your program must be executable. To mark a
program as executable run chmod +x my-file.py. You can then run my-file.py
via the Brickman File Browser or you can run it from the command line via $./my-file.py

User Resources

	Library Documentation

	Class documentation for this library can be found on our Read the Docs page [http://python-ev3dev.readthedocs.org/en/stable/] .
You can always go there to get information on how you can use this
library’s functionality.

	ev3python.com

	One of our community members, @ndward, has put together a great website
with detailed guides on using this library which are targeted at beginners.
If you are just getting started with programming, we highly recommend
that you check it out at ev3python.com [http://ev3python.com/]!

	Frequently-Asked Questions

	Experiencing an odd error or unsure of how to do something that seems
simple? Check our our FAQ [http://python-ev3dev.readthedocs.io/en/stable/faq.html] to see if there’s an existing answer.

	ev3dev.org

	ev3dev.org [http://ev3dev.org] is a great resource for finding guides and tutorials on
using ev3dev, straight from the maintainers.

	Support

	If you are having trouble using this library, please open an issue
at our Issues tracker [https://github.com/rhempel/ev3dev-lang-python/issues] so that we can help you. When opening an
issue, make sure to include as much information as possible about
what you are trying to do and what you have tried. The issue template
is in place to guide you through this process.

	Demo Robot

	Laurens Valk of robot-square [http://robotsquare.com/] has been kind enough to allow us to
reference his excellent EXPLOR3R [http://robotsquare.com/2015/10/06/explor3r-building-instructions/] robot. Consider building the
EXPLOR3R [http://robotsquare.com/2015/10/06/explor3r-building-instructions/] and running the demo programs referenced below to get
familiar with what Python programs using this binding look like.

	Demo Code

	There are demo programs [https://github.com/rhempel/ev3dev-lang-python/tree/master/demo] that you can run to get acquainted with
this language binding. The programs are designed to work with the
EXPLOR3R [http://robotsquare.com/2015/10/06/explor3r-building-instructions/] robot.

Upgrading this Library

You can upgrade this library from the command line as follows. Make sure
to type the password (the default is maker) when prompted.

sudo apt-get update
sudo apt-get install --only-upgrade python3-ev3dev

Developer Resources

	Python Package Index

	The Python language has a package repository [https://pypi.python.org/pypi] where you can find
libraries that others have written, including the latest version of
this package [https://pypi.python.org/pypi/python-ev3dev].

	The ev3dev Binding Specification

	Like all of the language bindings for ev3dev [http://ev3dev.org] supported hardware, the
Python binding follows the minimal API that must be provided per
this document [https://github.com/ev3dev/ev3dev-lang/blob/develop/wrapper-specification.md].

	The ev3dev-lang Project on GitHub

	The source repository for the generic API [https://github.com/ev3dev/ev3dev-lang] and the scripts to automatically
generate the binding. Only developers of the ev3dev-lang-python [https://github.com/rhempel/ev3dev-lang-python] binding
would normally need to access this information.

Python 2.x and Python 3.x Compatibility

Some versions of the ev3dev [http://ev3dev.org] distribution come with both Python 2.x [https://docs.python.org/2/] and Python 3.x [https://docs.python.org/3/] installed
but this library is compatible only with Python 3.

As of the 2016-10-17 ev3dev image, the version of this library which is included runs on
Python 3 and this is the only version that will be supported from here forward.

Contents

	API reference
	Motor classes
	Tacho motor

	Large EV3 Motor

	Medium EV3 Motor

	DC Motor

	Servo Motor

	Sensor classes
	Sensor

	Special sensor classes

	Other classes
	Remote Control

	Beacon Seeker

	Button

	Leds

	Power Supply

	Sound

	Screen

	Lego Port

	Working with ev3dev remotely using RPyC

	Frequently-Asked Questions
	My script works when launched as python3 script.py but exits immediately or throws an error when launched from Brickman or as ./script.py

Indices and tables

	Index

	Module Index

	Search Page

API reference

Each class in ev3dev module inherits from the base Device class.

Contents:

	Motor classes
	Tacho motor

	Large EV3 Motor

	Medium EV3 Motor

	DC Motor

	Servo Motor

	Sensor classes
	Sensor

	Special sensor classes

	Other classes
	Remote Control

	Beacon Seeker

	Button

	Leds

	Power Supply

	Sound

	Screen

	Lego Port

Motor classes

Tacho motor

Large EV3 Motor

Medium EV3 Motor

DC Motor

Servo Motor

Sensor classes

Sensor

This is the base class all the other sensor classes are derived from.

Special sensor classes

The classes derive from Sensor and provide helper functions
specific to the corresponding sensor type. Each of the functions makes
sure the sensor is in the required mode and then returns the specified value.

Touch Sensor

Color Sensor

Ultrasonic Sensor

Gyro Sensor

Infrared Sensor

Sound Sensor

Light Sensor

Other classes

Remote Control

Beacon Seeker

Button

Leds

Power Supply

Sound

Screen

Bitmap fonts

The Screen class allows to write text on the LCD using python
imaging library (PIL) interface (see description of the text() method
here [http://pillow.readthedocs.io/en/3.1.x/reference/ImageDraw.html#PIL.ImageDraw.PIL.ImageDraw.Draw.text]).
The ev3dev.fonts module contains bitmap fonts in PIL format that should
look good on a tiny EV3 screen:

import ev3dev.fonts as fonts
screen.draw.text((10,10), 'Hello World!', font=fonts.load('luBS14'))

	
ev3dev.fonts.available()

	Returns list of available font names.

	
ev3dev.fonts.load(name)

	Loads the font specified by name and returns it as an instance of
PIL.ImageFont [http://pillow.readthedocs.io/en/latest/reference/ImageFont.html]
class.

The following image lists all available fonts. The grid lines correspond
to EV3 screen size:

[image: _images/fonts.png]

Lego Port

Working with ev3dev remotely using RPyC

RPyC [http://rpyc.readthedocs.io/] (pronounced as are-pie-see), or Remote Python Call, is a transparent
python library for symmetrical remote procedure calls, clustering and
distributed-computing. RPyC makes use of object-proxying, a technique that
employs python’s dynamic nature, to overcome the physical boundaries between
processes and computers, so that remote objects can be manipulated as if they
were local. Here are simple steps you need to follow in order to install and
use RPyC with ev3dev:

	Install RPyC both on the EV3 and on your desktop PC. For the EV3, enter the
following command at the command prompt (after you connect with SSH [http://www.ev3dev.org/docs/tutorials/connecting-to-ev3dev-with-ssh/]):

sudo easy_install3 rpyc

On the desktop PC, it really depends on your operating system. In case it is
some flavor of linux, you should be able to do

sudo pip3 install rpyc

In case it is Windows, there is a win32 installer on the project’s
sourceforge page [http://sourceforge.net/projects/rpyc/files/main]. Also, have a look at the Download and Install [http://rpyc.readthedocs.io/en/latest/install.html] page
on their site.

	Create file rpyc_server.sh with the following contents on the EV3:

#!/bin/bash
python3 `which rpyc_classic.py`

and make the file executable:

chmod +x rpyc_server.sh

Launch the created file either from SSH session (with
./rpyc_server.sh command), or from brickman. It should output something
like

INFO:SLAVE/18812:server started on [0.0.0.0]:18812

and keep running.

	Now you are ready to connect to the RPyC server from your desktop PC. The
following python script should make a large motor connected to output port
A spin for a second.

import rpyc
conn = rpyc.classic.connect('ev3dev') # host name or IP address of the EV3
ev3 = conn.modules['ev3dev.ev3'] # import ev3dev.ev3 remotely
m = ev3.LargeMotor('outA')
m.run_timed(time_sp=1000, speed_sp=600)

You can run scripts like this from any interactive python environment, like
ipython shell/notebook, spyder, pycharm, etc.

Some advantages of using RPyC with ev3dev are:

	It uses much less resources than running ipython notebook on EV3; RPyC server
is lightweight, and only requires an IP connection to the EV3 once set up (no
ssh required).

	The scripts you are working with are actually stored and edited on your
desktop PC, with your favorite editor/IDE.

	Some robots may need much more computational power than what EV3 can give
you. A notable example is the Rubics cube solver: there is an algorithm that
provides almost optimal solution (in terms of number of cube rotations), but
it takes more RAM than is available on EV3. With RPYC, you could run the
heavy-duty computations on your desktop.

The most obvious disadvantage is latency introduced by network connection.
This may be a show stopper for robots where reaction speed is essential.

Frequently-Asked Questions

My script works when launched as python3 script.py but exits immediately or throws an error when launched from Brickman or as ./script.py

This may occur if your file includes Windows-style line endings, which are often
inserted by editors on Windows. To resolve this issue, open an SSH session and
run the following command, replacing <file> with the name of the Python file
you’re using:

sed -i 's/\r//g' <file>

This will fix it for the copy of the file on the brick, but if you plan to edit
it again from Windows you should configure your editor to use Unix-style endings.
For PyCharm, you can find a guide on doing this here [https://www.jetbrains.com/help/pycharm/2016.2/configuring-line-separators.html].
Most other editors have similar options; there may be an option for it in the
status bar at the bottom of the window or in the menu bar at the top.

Index

 A
 | L

A

 	
 	available() (in module ev3dev.fonts)

L

 	
 	load() (in module ev3dev.fonts)

 _static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/down-pressed.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Python language bindings for ev3dev

 		API reference

 		Motor classes

 		Tacho motor

 		Large EV3 Motor

 		Medium EV3 Motor

 		DC Motor

 		Servo Motor

 		Sensor classes

 		Sensor

 		Special sensor classes

 		Other classes

 		Remote Control

 		Beacon Seeker

 		Button

 		Leds

 		Power Supply

 		Sound

 		Screen

 		Lego Port

 		Working with ev3dev remotely using RPyC

 		Frequently-Asked Questions

 		My script works when launched as python3 script.py but exits immediately or throws an error when launched from Brickman or as ./script.py

_images/fonts.png
- charB10 charB12 charB14 charB18 ¢HarB24 ™" fharbI10
charBli2 charBIM charBII8 charBI2A” o charit2 hari14

harl18 harldq """ chertto charR12 chatR14 charR1 tharR24
po— cours10 courB12 courBfl4 courBl8 ogurB24- oursato
courBo12 cours014 courBO18 coulrBOIU™” sougpzo courol2 ouro1d
courolf cour®z 4™) courRlz cofrr14 courR18 ourR24
helvpos helvB10 helvB12 helvB1d helvB18 he|v824 delspoos o0
heivBoT2 helvBOTY helvBO18 holyBOZA™ hewdio renore eli014
helvO18 holyOP4 ™™ VA0 helvR1Z helfR14 helvR18 helyR24
rogtsos tsisto uBIS12 1uBIS 14 uBIS18 IuBIS19 [yBIS24!™

TowsTU TWEST TUBSTH TuBSTS TuBST9 [yBS24

stz tuista Is18 wiST9 JuiS24 ™ ursto urs12
IuRS14 IuRS18| |uRS19 |yRY24 ™™ st TubE12 ubB14
ubBIS IwbB19| ubB24 " kB0 mbpniz bBII4 ubBI1§
mbBI19 IubBIP4 ™ nabi10 ebr1z mB{14 ubil8 ubll 9
Rir (s TubRE TubRTe—jubR24——
ks Tutesto Tutesiz Tutesi4 TutBS18 TukBS19 utBS24["™

Tutrsto Tutkst2 TutRS14 TutRE18 TutRS19 TYtRS24™"™ oenB10
neenBi2 noenBld| neenBI8 ncenB2A™ neoldll0 noonBl2 cenBl14
neenBI18 peenBIST” neent10 neenl’2 neepl1d ncenl18 cenl24
acenhti noenR10 ncenR12 ncenR]4 R1 ndenR24 o rwhio

oyupl2 oyuple oyupls oy 24 Feftiae FHiB14 termid ernBla
inate tinB10 mB12 timB14| timB18 timB24 “" g

dmBH2 timbBI14 timBI18 timBI24 i cimii2 mi14
amil3 timi24) " = ez 4 timR18 imR24

_static/fonts.png
- charB10 charB12 charB14 charB18 ¢HarB24 ™" fharbI10
charBli2 charBIM charBII8 charBI2A” o charit2 hari14

harl18 harldq """ chertto charR12 chatR14 charR1 tharR24
po— cours10 courB12 courBfl4 courBl8 ogurB24- oursato
courBo12 cours014 courBO18 coulrBOIU™” sougpzo courol2 ouro1d
courolf cour®z 4™) courRlz cofrr14 courR18 ourR24
helvpos helvB10 helvB12 helvB1d helvB18 he|v824 delspoos o0
heivBoT2 helvBOTY helvBO18 holyBOZA™ hewdio renore eli014
helvO18 holyOP4 ™™ VA0 helvR1Z helfR14 helvR18 helyR24
rogtsos tsisto uBIS12 1uBIS 14 uBIS18 IuBIS19 [yBIS24!™

TowsTU TWEST TUBSTH TuBSTS TuBST9 [yBS24

stz tuista Is18 wiST9 JuiS24 ™ ursto urs12
IuRS14 IuRS18| |uRS19 |yRY24 ™™ st TubE12 ubB14
ubBIS IwbB19| ubB24 " kB0 mbpniz bBII4 ubBI1§
mbBI19 IubBIP4 ™ nabi10 ebr1z mB{14 ubil8 ubll 9
Rir (s TubRE TubRTe—jubR24——
ks Tutesto Tutesiz Tutesi4 TutBS18 TukBS19 utBS24["™

Tutrsto Tutkst2 TutRS14 TutRE18 TutRS19 TYtRS24™"™ oenB10
neenBi2 noenBld| neenBI8 ncenB2A™ neoldll0 noonBl2 cenBl14
neenBI18 peenBIST” neent10 neenl’2 neepl1d ncenl18 cenl24
acenhti noenR10 ncenR12 ncenR]4 R1 ndenR24 o rwhio

oyupl2 oyuple oyupls oy 24 Feftiae FHiB14 termid ernBla
inate tinB10 mB12 timB14| timB18 timB24 “" g

dmBH2 timbBI14 timBI18 timBI24 i cimii2 mi14
amil3 timi24) " = ez 4 timR18 imR24

_static/comment-bright.png

